[ad_1]
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Google Scholar
Chylek, P. et al. Annual mean Arctic amplification 1970–2020: observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 49, e2022GL099371 (2022).
Google Scholar
Aré, F. E. Thermal abrasion of sea coasts (part I). Polar Geogr. Geol. 12, 1 (1988).
Google Scholar
Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).
Google Scholar
Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).
Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014).
Google Scholar
Lantuit, H. et al. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).
Google Scholar
Grigoriev, M. N., Rachold, V., Schirrmeister, L. & Hubberten, H.-W. in The Organic Carbon Cycle in the Arctic: Present and Past (eds Stein, R. & Macdonald, R. W.) 41–45 (Springer, 2004).
Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. 34, 24964 (2015).
Martens, J., Wild, B., Semiletov, I., Dudarev, O. V. & Gustafsson, Ö. Circum-Arctic release of terrestrial carbon varies between regions and sources. Nat. Commun. 13, 5858 (2022).
Google Scholar
Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Global Biogeochem. Cycles 21, GB4011 (2007).
Google Scholar
McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochem. Cycles 30, 629–643 (2016).
Google Scholar
Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wåhlström, I. & Semiletov, I. P. Out-gassing of CO2 from Siberian shelf seas by terrestrial organic matter decomposition. Geophys. Res. Lett. 36, L20601 (2009).
Google Scholar
Vonk, J. E. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).
Google Scholar
Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).
Google Scholar
Tanski, G. et al. Permafrost carbon and CO2 pathways differ at contrasting coastal erosion sites in the Canadian Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2021.630493 (2021).
Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).
Günther, F. et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 9, 151–178 (2015).
Google Scholar
Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779–800 (2018).
Google Scholar
Jones B. M. et al. Coastal Permafrost Erosion (NOAA, 2020).
Nielsen, D. M. et al. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 12, 263–270 (2022).
Google Scholar
Mauritsen, T. et al. Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
Google Scholar
Dai, M. et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends. Annu. Rev. Earth Planet. Sci. 50, 593–626 (2022).
Google Scholar
Laruelle, G. G., Lauerwald, R., Pfeil, B. & Regnier, P. Regionalized global budget of the CO2 exchange at the air–water interface in continental shelf seas. Glob. Biogeochem. Cycles 28, 1199–1214 (2014).
Google Scholar
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).
Google Scholar
Vonk, J. E. et al. Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters. J. Geophys. Res. Oceans 119, 8410–8421 (2014).
Google Scholar
Bröder, L., Tesi, T., Andersson, A., Semiletov, I. & Gustafsson, Ö. Bounding cross-shelf transport time and degradation in Siberian-Arctic land–ocean carbon transfer. Nat. Commun. 9, 806 (2018).
Google Scholar
Jong, D. et al. Nearshore zone dynamics determine pathway of organic carbon from eroding permafrost coasts. Geophys. Res. Lett. 47, e2020GL088561 (2020).
Google Scholar
Tesi, T., Semiletov, I., Dudarev, O., Andersson, A. & Gustafsson, Ö. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and east Siberian shelf seas. J. Geophys. Res. Biogeosci. 121, 731–752 (2016).
Google Scholar
Martens, J. et al. Stabilization of mineral-associated organic carbon in Pleistocene permafrost. Nat. Commun. 14, 2120 (2023).
Google Scholar
Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).
Google Scholar
Cai, W.-J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329, 556–559 (2010).
Google Scholar
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Google Scholar
Vonk, J. E. & Gustafsson, Ö. Permafrost-carbon complexities. Nat. Geosci. 6, 675–676 (2013).
Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).
Google Scholar
Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
Google Scholar
Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nat. Clim. Change 10, 678–684 (2020).
Google Scholar
Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).
Google Scholar
Sánchez-García, L. et al. Inventories and behavior of particulate organic carbon in the Laptev and east Siberian seas. Global Biogeochem. Cycles 25, GB2007 (2011).
Google Scholar
Alling, V. et al. Nonconservative behavior of dissolved organic carbon across the Laptev and east Siberian seas. Global Biogeochem. Cycles 24, GB4033 (2010).
Google Scholar
Maerz, J., Six, K. D., Stemmler, I., Ahmerkamp, S. & Ilyina, T. Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean. Biogeosciences 17, 1765–1803 (2020).
Google Scholar
Mathis, M. et al. Seamless integration of the coastal ocean in global marine carbon cycle modeling. J. Adv. Model. Earth Syst. 14, e2021MS002789 (2022).
Google Scholar
Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 5, 287–315 (2013).
Google Scholar
Humborg, C. et al. Sea–air exchange patterns along the central and outer east Siberian Arctic shelf as inferred from continuous CO2, stable isotope, and bulk chemistry measurements. Global Biogeochem. Cycles 31, 1173–1191 (2017).
Google Scholar
Semiletov, I. P., Pipko, I. I., Repina, I. & Shakhova, N. E. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere–ice–water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J. Mar. Syst. 66, 204–226 (2007).
Google Scholar
Pipko, I. I., Semiletov, I. P., Tishchenko, P. Y., Pugach, S. P. & Savel’eva, N. I. Variability of the carbonate system parameters in the coast-shelf zone of the east Siberian Sea during the autumn season. Oceanology 48, 54–67 (2008).
Google Scholar
Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wåhlström, I. & Anderson, L. G. Interannual variability of air-sea CO2 fluxes and carbon system in the east Siberian Sea. Biogeosciences 8, 1987–2007 (2011).
Google Scholar
Semiletov, I. P., Shakhova, N. E., Sergienko, V. I., Pipko, I. I. & Dudarev, O. V. On carbon transport and fate in the east Siberian Arctic land–shelf–atmosphere system. Environ. Res. Lett. 7, 015201 (2012).
Google Scholar
Semiletov, I. P. et al. Acidification of east Siberian Arctic shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 9, 361–365 (2016).
Google Scholar
Semiletov, I. P. Destruction of the coastal permafrost as an important factor in biogeochemistry of the Arctic shelf waters. Dokl. Akad. Nauk 368, 679–682 (1999).
Google Scholar
Manizza, M. et al. A model of the Arctic Ocean carbon cycle. J. Geophys. Res. Oceans 116, C12020 (2011).
Google Scholar
Wåhlström, I., Omstedt, A., Björk, G. & Anderson, L. G. Modeling the CO2 dynamics in the Laptev sea, Arctic Ocean: part II. Sensitivity of fluxes to changes in the forcing. J. Mar. Syst. 111, 1–10 (2013).
Google Scholar
Terhaar, J., Orr, J. C., Ethé, C., Regnier, P. & Bopp, L. Simulated Arctic Ocean response to doubling of riverine carbon and nutrient delivery. Global Biogeochem. Cycles 33, 1048–1070 (2019).
Google Scholar
Lacroix, F., Ilyina, T. & Hartmann, J. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. Biogeosciences 17, 55–88 (2020).
Google Scholar
Bertin, C. et al. Biogeochemical river runoff drives intense coastal Arctic Ocean CO2 outgassing. Geophys. Res. Lett. 50, e2022GL102377 (2023).
Google Scholar
Forest, A. et al. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO2 fluxes. Biogeosciences 11, 2827–2856 (2014).
Google Scholar
Landschützer, P. et al. An Updated Observation-based Global Monthly Gridded Sea Surface pCO2 and Air–Sea CO2 Flux Product from 1982 through 2015 and its Monthly Climatology (National Centers for Environmental Information, 2017).
Roobaert, A. et al. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochem. Cycles 33, 1693–1714 (2019).
Google Scholar
Orr, J. C., Kwiatkowski, L. & Pörtner, H.-O. Arctic Ocean annual high in pCO2 could shift from winter to summer. Nature 610, 94–100 (2022).
Google Scholar
Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903 (2020).
Google Scholar
Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: evaluation of air–sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6, 2433–2459 (2009).
Google Scholar
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326, 1098–1100 (2009).
Google Scholar
Prytherch, J. et al. Direct determination of the air–sea CO2 gas transfer velocity in Arctic sea ice regions. Geophys. Res. Lett. 44, 3770–3778 (2017).
Google Scholar
Butterworth, B. J. & Miller, S. D. Air–sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 43, 7223–7230 (2016).
Google Scholar
Notz, D. & SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).
Google Scholar
Crawford, A., Stroeve, J., Smith, A. & Jahn, A. Arctic open-water periods are projected to lengthen dramatically by 2100. Commun. Earth Environ. 2, 109 (2021).
Google Scholar
Hošeková, L. et al. Landfast ice and coastal wave exposure in northern Alaska. Geophys. Res. Lett. 48, e2021GL095103 (2021).
Google Scholar
European Environment Agency Greenhouse Gas Emissions By Source Sector https://ec.europa.eu/eurostat/databrowser/bookmark/df121a5f-2a95-4b26-aeb9-c687f9dd3162?lang=en (2023).
Mathis, M. et al. Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation. Nat. Clim. Change 14, 373–379 (2024).
Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).
Google Scholar
Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13, 49–78 (2019).
Google Scholar
Stevens, B. et al. Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).
Google Scholar
Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst. 5, 459–482 (2013).
Google Scholar
Jungclaus, J. H. et al. Characteristics of the ocean simulations in the Max Planck Institute ocean model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 5, 422–446 (2013).
Google Scholar
Valcke, S. The OASIS3 coupler: a European climate modelling community software. Geosci. Model Dev. 6, 373–388 (2013).
Google Scholar
Paulsen, H., Ilyina, T., Six, K. D. & Stemmler, I. Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC. J. Adv. Model. Earth Syst. 9, 438–464 (2017).
Google Scholar
Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A Oceanogr. Res. Pap. 34, 267–285 (1987).
Google Scholar
Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem. Cycles 7, 843–878 (1993).
Google Scholar
Tanski, G., Couture, N., Lantuit, H., Eulenburg, A. & Fritz, M. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochem. Cycles 30, 1054–1068 (2016).
Google Scholar
Guo, L., Ping, C.-L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to Arctic rivers in a changing climate. Geophys. Res. Lett. 34, GL030689 (2007).
Google Scholar
Jong, D. et al. Selective sorting and degradation of permafrost organic matter in the nearshore zone of Herschel Island (Yukon, Canada). J. Geophys. Res. Biogeosci. 129, e2023JG007479 (2024).
Google Scholar
Sharples, J., Middelburg, J. J., Fennel, K. & Jickells, T. D. What proportion of riverine nutrients reaches the open ocean? Global Biogeochem. Cycles 31, 39–58 (2017).
Google Scholar
Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic and a CO2 sink? Global Biogeochem. Cycles 35, e2020GB006603 (2021).
Google Scholar
Schirrmeister, L. et al. Sedimentary characteristics and origin of the late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands – a review. Quat. Int. 241, 3–25 (2011).
Google Scholar
Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon coastal plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).
Google Scholar
Fuchs, M. et al. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences 15, 953–971 (2018).
Google Scholar
Jongejans, L. L. et al. Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska. Biogeosciences 15, 6033–6048 (2018).
Google Scholar
Fuchs, M. et al. Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J. Geophys. Res. Biogeosci. 124, 1230–1247 (2019).
Google Scholar
Bristol, E. M. et al. Geochemistry of coastal permafrost and erosion-driven organic matter fluxes to the Beaufort Sea near Drew Point, Alaska. Front. Earth Sci. https://doi.org/10.3389/feart.2020.598933 (2021).
Fuchs, M. et al. Rapid fluvio-thermal erosion of a yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00336 (2020).
Wetterich, S. et al. The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr. Cryosphere 14, 4525–4551 (2020).
Google Scholar
Wieners, K.-H. et al. MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP ssp585. scite https://doi.org/10.22033/esgf/cmip6.6705 (2019).
Martens, J. et al. Cascade – the circum-Arctic sediment carbon database. Earth Syst. Sci. Data 13, 2561–2572 (2021).
Google Scholar
Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).
Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).
Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 90, 283–297 (2008).
Google Scholar
Nielsen, D. M. et al. MPI-ESM model output including coastal permafrost erosion and plotting scripts. DOKU at DKRZ https://hdl.handle.net/21.14106/168ba7cba84d3de51ffb9a6d4507e55891846e30 (2024).
Cartopy: A Cartographic Python Library with a Matplotlib Interface (Met Office, 2010).
MPI-ESM 1.2.01p7 (Model Development Team Max-Planck-Institut für Meterologie, 2024).
Nielsen, D. M. et al. Modified MPI-ESM model code including coastal permafrost erosion. DOKU at DKRZ https://hdl.handle.net/21.14106/f81e2d7ca6141bbf7ec4c75c52830463f8f93154 (2024).
[ad_2]
Source link
Discover more from Mission LiFE
Subscribe to get the latest posts sent to your email.