GA4 432855558 307042592
0 Comments

Mission LiFE

[ad_1]

41558 2024 2074 Fig1 HTML

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article 

    Google Scholar 

  • Chylek, P. et al. Annual mean Arctic amplification 1970–2020: observed and simulated by CMIP6 climate models. Geophys. Res. Lett. 49, e2022GL099371 (2022).

    Article 

    Google Scholar 

  • Aré, F. E. Thermal abrasion of sea coasts (part I). Polar Geogr. Geol. 12, 1 (1988).

    Article 

    Google Scholar 

  • Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).

    Article 

    Google Scholar 

  • Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. 38, L17503 (2011).

  • Barnhart, K. R., Overeem, I. & Anderson, R. S. The effect of changing sea ice on the physical vulnerability of Arctic coasts. Cryosphere 8, 1777–1799 (2014).

    Article 

    Google Scholar 

  • Lantuit, H. et al. The Arctic Coastal Dynamics Database: a new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 35, 383–400 (2012).

    Article 
    CAS 

    Google Scholar 

  • Grigoriev, M. N., Rachold, V., Schirrmeister, L. & Hubberten, H.-W. in The Organic Carbon Cycle in the Arctic: Present and Past (eds Stein, R. & Macdonald, R. W.) 41–45 (Springer, 2004).

  • Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. 34, 24964 (2015).

  • Martens, J., Wild, B., Semiletov, I., Dudarev, O. V. & Gustafsson, Ö. Circum-Arctic release of terrestrial carbon varies between regions and sources. Nat. Commun. 13, 5858 (2022).

    Article 
    CAS 

    Google Scholar 

  • Raymond, P. A. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest arctic rivers. Global Biogeochem. Cycles 21, GB4011 (2007).

    Article 

    Google Scholar 

  • McClelland, J. W. et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochem. Cycles 30, 629–643 (2016).

    Article 
    CAS 

    Google Scholar 

  • Anderson, L. G., Jutterström, S., Hjalmarsson, S., Wåhlström, I. & Semiletov, I. P. Out-gassing of CO2 from Siberian shelf seas by terrestrial organic matter decomposition. Geophys. Res. Lett. 36, L20601 (2009).

    Article 

    Google Scholar 

  • Vonk, J. E. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).

    Article 
    CAS 

    Google Scholar 

  • Tanski, G. et al. Rapid CO2 release from eroding permafrost in seawater. Geophys. Res. Lett. 46, 11244–11252 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tanski, G. et al. Permafrost carbon and CO2 pathways differ at contrasting coastal erosion sites in the Canadian Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2021.630493 (2021).

  • Jones, B. M. et al. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophys. Res. Lett. 36, L03503 (2009).

  • Günther, F. et al. Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 9, 151–178 (2015).

    Article 

    Google Scholar 

  • Irrgang, A. M. et al. Variability in rates of coastal change along the Yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surf. 123, 779–800 (2018).

    Article 

    Google Scholar 

  • Jones B. M. et al. Coastal Permafrost Erosion (NOAA, 2020).

  • Nielsen, D. M. et al. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 12, 263–270 (2022).

    Article 

    Google Scholar 

  • Mauritsen, T. et al. Developments in the MPI-M earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).

    Article 

    Google Scholar 

  • Dai, M. et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends. Annu. Rev. Earth Planet. Sci. 50, 593–626 (2022).

    Article 
    CAS 

    Google Scholar 

  • Laruelle, G. G., Lauerwald, R., Pfeil, B. & Regnier, P. Regionalized global budget of the CO2 exchange at the air–water interface in continental shelf seas. Glob. Biogeochem. Cycles 28, 1199–1214 (2014).

    Article 
    CAS 

    Google Scholar 

  • Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vonk, J. E. et al. Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters. J. Geophys. Res. Oceans 119, 8410–8421 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bröder, L., Tesi, T., Andersson, A., Semiletov, I. & Gustafsson, Ö. Bounding cross-shelf transport time and degradation in Siberian-Arctic land–ocean carbon transfer. Nat. Commun. 9, 806 (2018).

    Article 

    Google Scholar 

  • Jong, D. et al. Nearshore zone dynamics determine pathway of organic carbon from eroding permafrost coasts. Geophys. Res. Lett. 47, e2020GL088561 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tesi, T., Semiletov, I., Dudarev, O., Andersson, A. & Gustafsson, Ö. Matrix association effects on hydrodynamic sorting and degradation of terrestrial organic matter during cross-shelf transport in the Laptev and east Siberian shelf seas. J. Geophys. Res. Biogeosci. 121, 731–752 (2016).

    Article 
    CAS 

    Google Scholar 

  • Martens, J. et al. Stabilization of mineral-associated organic carbon in Pleistocene permafrost. Nat. Commun. 14, 2120 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change 10, 983–992 (2020).

    Article 

    Google Scholar 

  • Cai, W.-J. et al. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329, 556–559 (2010).

    Article 
    CAS 

    Google Scholar 

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 

    Google Scholar 

  • Vonk, J. E. & Gustafsson, Ö. Permafrost-carbon complexities. Nat. Geosci. 6, 675–676 (2013).

  • Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).

    Article 
    CAS 

    Google Scholar 

  • Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nat. Clim. Change 10, 678–684 (2020).

    Article 
    CAS 

    Google Scholar 

  • Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sánchez-García, L. et al. Inventories and behavior of particulate organic carbon in the Laptev and east Siberian seas. Global Biogeochem. Cycles 25, GB2007 (2011).

    Article 

    Google Scholar 

  • Alling, V. et al. Nonconservative behavior of dissolved organic carbon across the Laptev and east Siberian seas. Global Biogeochem. Cycles 24, GB4033 (2010).

    Article 

    Google Scholar 

  • Maerz, J., Six, K. D., Stemmler, I., Ahmerkamp, S. & Ilyina, T. Microstructure and composition of marine aggregates as co-determinants for vertical particulate organic carbon transfer in the global ocean. Biogeosciences 17, 1765–1803 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mathis, M. et al. Seamless integration of the coastal ocean in global marine carbon cycle modeling. J. Adv. Model. Earth Syst. 14, e2021MS002789 (2022).

    Article 

    Google Scholar 

  • Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 5, 287–315 (2013).

    Article 

    Google Scholar 

  • Humborg, C. et al. Sea–air exchange patterns along the central and outer east Siberian Arctic shelf as inferred from continuous CO2, stable isotope, and bulk chemistry measurements. Global Biogeochem. Cycles 31, 1173–1191 (2017).

    Article 
    CAS 

    Google Scholar 

  • Semiletov, I. P., Pipko, I. I., Repina, I. & Shakhova, N. E. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere–ice–water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J. Mar. Syst. 66, 204–226 (2007).

    Article 

    Google Scholar 

  • Pipko, I. I., Semiletov, I. P., Tishchenko, P. Y., Pugach, S. P. & Savel’eva, N. I. Variability of the carbonate system parameters in the coast-shelf zone of the east Siberian Sea during the autumn season. Oceanology 48, 54–67 (2008).

    Article 

    Google Scholar 

  • Pipko, I. I., Semiletov, I. P., Pugach, S. P., Wåhlström, I. & Anderson, L. G. Interannual variability of air-sea CO2 fluxes and carbon system in the east Siberian Sea. Biogeosciences 8, 1987–2007 (2011).

    Article 
    CAS 

    Google Scholar 

  • Semiletov, I. P., Shakhova, N. E., Sergienko, V. I., Pipko, I. I. & Dudarev, O. V. On carbon transport and fate in the east Siberian Arctic land–shelf–atmosphere system. Environ. Res. Lett. 7, 015201 (2012).

    Article 

    Google Scholar 

  • Semiletov, I. P. et al. Acidification of east Siberian Arctic shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 9, 361–365 (2016).

    Article 
    CAS 

    Google Scholar 

  • Semiletov, I. P. Destruction of the coastal permafrost as an important factor in biogeochemistry of the Arctic shelf waters. Dokl. Akad. Nauk 368, 679–682 (1999).

    CAS 

    Google Scholar 

  • Manizza, M. et al. A model of the Arctic Ocean carbon cycle. J. Geophys. Res. Oceans 116, C12020 (2011).

    Article 

    Google Scholar 

  • Wåhlström, I., Omstedt, A., Björk, G. & Anderson, L. G. Modeling the CO2 dynamics in the Laptev sea, Arctic Ocean: part II. Sensitivity of fluxes to changes in the forcing. J. Mar. Syst. 111, 1–10 (2013).

    Article 

    Google Scholar 

  • Terhaar, J., Orr, J. C., Ethé, C., Regnier, P. & Bopp, L. Simulated Arctic Ocean response to doubling of riverine carbon and nutrient delivery. Global Biogeochem. Cycles 33, 1048–1070 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lacroix, F., Ilyina, T. & Hartmann, J. Oceanic CO2 outgassing and biological production hotspots induced by pre-industrial river loads of nutrients and carbon in a global modeling approach. Biogeosciences 17, 55–88 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bertin, C. et al. Biogeochemical river runoff drives intense coastal Arctic Ocean CO2 outgassing. Geophys. Res. Lett. 50, e2022GL102377 (2023).

    Article 
    CAS 

    Google Scholar 

  • Forest, A. et al. Synoptic evaluation of carbon cycling in the Beaufort Sea during summer: contrasting river inputs, ecosystem metabolism and air–sea CO2 fluxes. Biogeosciences 11, 2827–2856 (2014).

    Article 
    CAS 

    Google Scholar 

  • Landschützer, P. et al. An Updated Observation-based Global Monthly Gridded Sea Surface pCO2 and Air–Sea CO2 Flux Product from 1982 through 2015 and its Monthly Climatology (National Centers for Environmental Information, 2017).

  • Roobaert, A. et al. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochem. Cycles 33, 1693–1714 (2019).

    Article 
    CAS 

    Google Scholar 

  • Orr, J. C., Kwiatkowski, L. & Pörtner, H.-O. Arctic Ocean annual high in pCO2 could shift from winter to summer. Nature 610, 94–100 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bates, N. R. & Mathis, J. T. The Arctic Ocean marine carbon cycle: evaluation of air–sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences 6, 2433–2459 (2009).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326, 1098–1100 (2009).

    Article 
    CAS 

    Google Scholar 

  • Prytherch, J. et al. Direct determination of the air–sea CO2 gas transfer velocity in Arctic sea ice regions. Geophys. Res. Lett. 44, 3770–3778 (2017).

    Article 
    CAS 

    Google Scholar 

  • Butterworth, B. J. & Miller, S. D. Air–sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 43, 7223–7230 (2016).

    Article 
    CAS 

    Google Scholar 

  • Notz, D. & SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    Article 

    Google Scholar 

  • Crawford, A., Stroeve, J., Smith, A. & Jahn, A. Arctic open-water periods are projected to lengthen dramatically by 2100. Commun. Earth Environ. 2, 109 (2021).

    Article 

    Google Scholar 

  • Hošeková, L. et al. Landfast ice and coastal wave exposure in northern Alaska. Geophys. Res. Lett. 48, e2021GL095103 (2021).

    Article 

    Google Scholar 

  • European Environment Agency Greenhouse Gas Emissions By Source Sector https://ec.europa.eu/eurostat/databrowser/bookmark/df121a5f-2a95-4b26-aeb9-c687f9dd3162?lang=en (2023).

  • Mathis, M. et al. Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation. Nat. Clim. Change 14, 373–379 (2024).

  • Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J. Geophys. Res. Atmos. 126, e2019JD032361 (2021).

    Article 

    Google Scholar 

  • Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 13, 49–78 (2019).

    Article 

    Google Scholar 

  • Stevens, B. et al. Atmospheric component of the MPI-M earth system model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172 (2013).

    Article 

    Google Scholar 

  • Reick, C. H., Raddatz, T., Brovkin, V. & Gayler, V. Representation of natural and anthropogenic land cover change in MPI-ESM. J. Adv. Model. Earth Syst. 5, 459–482 (2013).

    Article 

    Google Scholar 

  • Jungclaus, J. H. et al. Characteristics of the ocean simulations in the Max Planck Institute ocean model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 5, 422–446 (2013).

    Article 

    Google Scholar 

  • Valcke, S. The OASIS3 coupler: a European climate modelling community software. Geosci. Model Dev. 6, 373–388 (2013).

    Article 

    Google Scholar 

  • Paulsen, H., Ilyina, T., Six, K. D. & Stemmler, I. Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC. J. Adv. Model. Earth Syst. 9, 438–464 (2017).

    Article 

    Google Scholar 

  • Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A Oceanogr. Res. Pap. 34, 267–285 (1987).

    Article 
    CAS 

    Google Scholar 

  • Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W. & Sutherland, S. C. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochem. Cycles 7, 843–878 (1993).

    Article 
    CAS 

    Google Scholar 

  • Tanski, G., Couture, N., Lantuit, H., Eulenburg, A. & Fritz, M. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean. Global Biogeochem. Cycles 30, 1054–1068 (2016).

    Article 
    CAS 

    Google Scholar 

  • Guo, L., Ping, C.-L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to Arctic rivers in a changing climate. Geophys. Res. Lett. 34, GL030689 (2007).

    Article 

    Google Scholar 

  • Jong, D. et al. Selective sorting and degradation of permafrost organic matter in the nearshore zone of Herschel Island (Yukon, Canada). J. Geophys. Res. Biogeosci. 129, e2023JG007479 (2024).

    Article 
    CAS 

    Google Scholar 

  • Sharples, J., Middelburg, J. J., Fennel, K. & Jickells, T. D. What proportion of riverine nutrients reaches the open ocean? Global Biogeochem. Cycles 31, 39–58 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lacroix, F., Ilyina, T., Laruelle, G. G. & Regnier, P. Reconstructing the preindustrial coastal carbon cycle through a global ocean circulation model: was the global continental shelf already both autotrophic and a CO2 sink? Global Biogeochem. Cycles 35, e2020GB006603 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schirrmeister, L. et al. Sedimentary characteristics and origin of the late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands – a review. Quat. Int. 241, 3–25 (2011).

    Article 

    Google Scholar 

  • Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H. & Fritz, M. Coastal erosion of permafrost soils along the Yukon coastal plain and fluxes of organic carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422 (2018).

    Article 

    Google Scholar 

  • Fuchs, M. et al. Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia. Biogeosciences 15, 953–971 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jongejans, L. L. et al. Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska. Biogeosciences 15, 6033–6048 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fuchs, M. et al. Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J. Geophys. Res. Biogeosci. 124, 1230–1247 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bristol, E. M. et al. Geochemistry of coastal permafrost and erosion-driven organic matter fluxes to the Beaufort Sea near Drew Point, Alaska. Front. Earth Sci. https://doi.org/10.3389/feart.2020.598933 (2021).

  • Fuchs, M. et al. Rapid fluvio-thermal erosion of a yedoma permafrost cliff in the Lena River delta. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00336 (2020).

  • Wetterich, S. et al. The cryostratigraphy of the Yedoma cliff of Sobo-Sise Island (Lena delta) reveals permafrost dynamics in the central Laptev Sea coastal region during the last 52 kyr. Cryosphere 14, 4525–4551 (2020).

    Article 

    Google Scholar 

  • Wieners, K.-H. et al. MPI-M MPIESM1.2-LR model output prepared for CMIP6 ScenarioMIP ssp585. scite https://doi.org/10.22033/esgf/cmip6.6705 (2019).

  • Martens, J. et al. Cascade – the circum-Arctic sediment carbon database. Earth Syst. Sci. Data 13, 2561–2572 (2021).

    Article 

    Google Scholar 

  • Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Clim. Change 90, 283–297 (2008).

    Article 
    CAS 

    Google Scholar 

  • Nielsen, D. M. et al. MPI-ESM model output including coastal permafrost erosion and plotting scripts. DOKU at DKRZ https://hdl.handle.net/21.14106/168ba7cba84d3de51ffb9a6d4507e55891846e30 (2024).

  • Cartopy: A Cartographic Python Library with a Matplotlib Interface (Met Office, 2010).

  • MPI-ESM 1.2.01p7 (Model Development Team Max-Planck-Institut für Meterologie, 2024).

  • Nielsen, D. M. et al. Modified MPI-ESM model code including coastal permafrost erosion. DOKU at DKRZ https://hdl.handle.net/21.14106/f81e2d7ca6141bbf7ec4c75c52830463f8f93154 (2024).

  • [ad_2]

    Source link


    Discover more from Mission LiFE

    Subscribe to get the latest posts sent to your email.


    Leave a Reply

    Categories

    Bharat Amrutkal Trusr@NGO India.

    All rights reserved.

    Design by Mission LiFE

    Discover more from Mission LiFE

    Subscribe now to keep reading and get access to the full archive.

    Continue reading