GA4 432855558 307042592
0 Comments

Mission LiFE

[ad_1]

41558 2024 2101 Fig1 HTML

  • Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, 13 (2010).

    Article 

    Google Scholar 

  • Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).

    Article 
    CAS 

    Google Scholar 

  • Freeman, C., Ostle, N. & Kang, H. An enzymatic ‘latch’ on a global carbon store. Nature 409, 149 (2001).

    Article 
    CAS 

    Google Scholar 

  • Fenner, N. & Freeman, C. Woody litter protects peat carbon stocks during drought. Nat. Clim. Change 10, 363–369 (2020).

    Article 

    Google Scholar 

  • Murray, N. J. The extent and drivers of global wetland loss. Nature 614, 234–235 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fluet-Chouinard, E. et al. Extensive global wetland loss over the past three centuries. Nature 614, 281–286 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

    Article 
    CAS 

    Google Scholar 

  • Urbanová, Z. & Hájek, T. S. Revisiting the concept of ‘enzymic latch’ on carbon in peatlands. Sci. Total Environ. 779, 146384 (2021).

    Article 

    Google Scholar 

  • Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19, 2804–2813 (2013).

    Article 

    Google Scholar 

  • Wang, Y. Y., Wang, H., He, J. & Feng, X. J. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 8, 15972 (2017).

    Article 
    CAS 

    Google Scholar 

  • Toberman, H. et al. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland. Soil Biol. Biochem. 40, 1519–1532 (2008).

    Article 
    CAS 

    Google Scholar 

  • Harris, L. I., Moore, T. R., Roulet, N. T. & Pinsonneault, A. J. Limited effect of drainage on peat properties, porewater chemistry and peat decomposition proxies in a boreal peatland. Biogeochemistry 151, 43–62 (2020).

    Article 
    CAS 

    Google Scholar 

  • Laiho, R. Decomposition in peatlands: reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biol. Biochem. 38, 2011–2024 (2006).

    Article 
    CAS 

    Google Scholar 

  • Freeman, C., Ostle, N. J., Fenner, N. & Kang, H. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol. Biochem. 36, 1663–1667 (2004).

    Article 
    CAS 

    Google Scholar 

  • Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. P., Xiang, W., Huang, C. L., Liu, Y. & Tan, Y. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling. Soil Biol. Biochem. 156, 108241 (2021).

    Article 
    CAS 

    Google Scholar 

  • McGivern, B. B. et al. Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat. Commun. 12, 2466 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kang, H. et al. Biologically driven DOC release from peatlands during recovery from acidification. Nat. Commun. 9, 3807 (2018).

    Article 

    Google Scholar 

  • Kitson, E. & Bell, N. G. A. The response of microbial communities to peatland drainage and rewetting: a review. Front. Microbiol. 11, 582812 (2020).

    Article 

    Google Scholar 

  • Sytiuk, A. et al. Linkages between Sphagnum metabolites and peatland CO2 uptake are sensitive to seasonality in warming trends. New Phytol. 237, 1164–1178 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bao, T., Jia, G. & Xu, X. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change 13, 462–469 (2023).

    Article 
    CAS 

    Google Scholar 

  • Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, 594 (2022).

    Article 

    Google Scholar 

  • Zhao, Y. P. et al. Sphagnum increases soil’s sequestration capacity of mineral-associated organic carbon via activating metal oxides. Nat. Commun. 14, 5052 (2023).

    Article 
    CAS 

    Google Scholar 

  • Liu, C. Z. et al. Enhanced microbial contribution to mineral-associated organic carbon accrual in drained wetlands: beyond direct lignin-iron interactions. Soil Biol. Biochem. 185, 109152 (2023).

    Article 
    CAS 

    Google Scholar 

  • Clymo, R. S. & Hayward, P. M. in Bryophyte Ecology (ed. Smith, A. J. E.) 229–289 (Chapman and Hall, 1982).

  • Piatkowski, B. T. & Shaw, A. J. Functional trait evolution in Sphagnum peat mosses and its relationship to niche construction. New Phytol. 223, 939–949 (2019).

    Article 
    CAS 

    Google Scholar 

  • Van Breemen, N. How Sphagnum bogs down other plants. Trends Ecol. Evol. 10, 270–275 (1995).

    Article 

    Google Scholar 

  • Jassey, V. E. J., Chiapusio, G. & Binet, B. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob. Change Biol. 19, 811–823 (2013).

    Article 

    Google Scholar 

  • Bengtsson, F. et al. Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J. Ecol. 109, 417–431 (2021).

    Article 
    CAS 

    Google Scholar 

  • Strack, M., Waddington, J. M., Lucchese, M. C. & Cagampan, J. P. Moisture controls on CO2 exchange in a Sphagnum-dominated peatland: results from an extreme drought field experiment. Ecohydrology 2, 454–461 (2009).

    Article 
    CAS 

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    Article 

    Google Scholar 

  • Feng, K. et al. iNAP: an integrated Network Analysis Pipeline for microbiome studies. iMeta 1, 13 (2022).

    Article 

    Google Scholar 

  • Yuan, M. M. et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).

    Article 

    Google Scholar 

  • Xiao, N. et al. Disentangling direct from indirect relationships in association networks. Proc. Natl Acad. Sci. USA 119, e2109995119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sytiuk, A. et al. Biochemical traits enhance the trait concept in Sphagnum ecology. Oikos 2022, e09119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vranová, E., Coman, D. & Gruissem, W. Structure and dynamics of the isoprenoid pathway network. Mol. Plant 5, 318–333 (2012).

    Article 

    Google Scholar 

  • Das, K. & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2, 53 (2014).

    Article 

    Google Scholar 

  • Zhao, Y. P. et al. Triple locks on soil organic carbon exerted by Sphagnum acid in wetlands. Geochim. Cosmochim. Acta 31, 524–537 (2021).

    Google Scholar 

  • Noyce, G. L. et al. Oxygen priming induced by elevated CO2 reduces carbon accumulation and methane emissions in coastal wetlands. Nat. Geosci. 16, 63–68 (2023).

    Article 
    CAS 

    Google Scholar 

  • Larmola, T. et al. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).

    Article 

    Google Scholar 

  • Pind, A., Freeman, C. & Lock, M. A. Enzymic degradation of phenolic materials in peatlands measurement of phenol oxidase activity. Plant Soil 159, 227–231 (1994).

    Article 
    CAS 

    Google Scholar 

  • Khosrozadeh, S., Dorodnikov, M., Reitz, T. & Blagodatskaya, E. An improved Amplex Red-based fluorometric assay of phenol oxidases and peroxidases activity: a case study on Haplic Chernozem. Eur. J. Soil Sci. 73, e13225 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kim, J. I., Yang, Y. & Kang, H. Fluorometric assay for phenol oxidase activity in soils and its controlling variables. Appl. Soil Ecol. 195, 105240 (2024).

    Article 

    Google Scholar 

  • Bach, C. E. et al. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA and ABTS: effect of assay conditions and soil type. Soil Biol. Biochem. 67, 183–191 (2013).

    Article 
    CAS 

    Google Scholar 

  • Naughton, H. R. et al. Reactive iron, not fungal community, drives organic carbon oxidation potential in floodplain soils. Soil Biol. Biochem. 178, 108962 (2023).

    Article 
    CAS 

    Google Scholar 

  • German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).

    Article 
    CAS 

    Google Scholar 

  • Sanchez-Julia, M. & Turner, B. L. Abiotic contribution to phenol oxidase activity across a manganese gradient in tropical forest soils. Biogeochemistry 153, 1–13 (2021).

    Article 

    Google Scholar 

  • Zimmerman, A. R., Chorover, J., Goyne, K. W. & Brantley, S. L. Protection of mesopore-adsorbed organic matter from enzymatic degradation. Environ. Sci. Technol. 38, 4542–4548 (2004).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Change Biol. 28, 7410–7427 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, C. Z. et al. Metallic protection of soil carbon: divergent drainage effects in Sphagnum vs. non-Sphagnum wetlands. Natl Sci. Rev. 11, nwae178 (2024).

    Article 

    Google Scholar 

  • Box, J. D. Investigation of the folin-ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17, 249–261 (1983).

    Article 

    Google Scholar 

  • Turner, B. L. & Haygarth, P. M. Changes in bicarbonate-extractable inorganic and organic phosphorus by drying pasture soils. Soil Sci. Soc. Am. J. 67, 344–350 (2003).

    Article 
    CAS 

    Google Scholar 

  • Peng, Z. et al. Contrasting patterns and drivers of soil micronutrient availability in paddy and maize fields of eastern China. Geoderma 431, 116342 (2013).

    Article 

    Google Scholar 

  • Stookey, L. L. Ferrozine a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

    Article 
    CAS 

    Google Scholar 

  • Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. P., Xiang, W., Yan, S., Hang, Y. B. & Fan, W. G. Laccase activity in Sphagnum-dominated peatland: a study based on a novel measurement of delay dynamics (MDD) for determining laccase activity. Soil Biol. Biochem. 133, 108–115 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ausec, L., van Elsas, J. D. & Mandic-Mulec, I. Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol. Biochem. 43, 975–983 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ortiz, M. et al. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. Proc. Natl Acad. Sci. USA 118, e2025322118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 

    Google Scholar 

  • Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. 7, 1054–1062 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).

    Article 

    Google Scholar 

  • Zhao, Y. P. et al. Data for ‘Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage’. Figshare https://doi.org/10.6084/m9.figshare.26038639 (2024).

  • Zhao, Y. P. et al. Code used for ‘Plant–microbe interactions underpin contrasting enzymatic responses to wetland drainage’. Figshare https://doi.org/10.6084/m9.figshare.25604109.v1 (2024).

  • [ad_2]

    Source link


    Discover more from Mission LiFE

    Subscribe to get the latest posts sent to your email.


    Leave a Reply

    Categories

    Bharat Amrutkal Trusr@NGO India.

    All rights reserved.

    Design by Mission LiFE

    Discover more from Mission LiFE

    Subscribe now to keep reading and get access to the full archive.

    Continue reading