GA4 432855558 307042592
0 Comments

Mission LiFE

[ad_1]

41558 2024 2140 Fig1 HTML

  • Forster, P. M. et al. Indicators of global climate change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).

    Article 

    Google Scholar 

  • Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article 

    Google Scholar 

  • Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).

    Article 

    Google Scholar 

  • Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 

    Google Scholar 

  • Sullivan, A. et al. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires (United Nations Environment Programme, 2022).

  • Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Climate Change 166, 9 (2021).

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Article 
    CAS 

    Google Scholar 

  • Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B 371, 20150345 (2016).

    Article 

    Google Scholar 

  • Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet Change 150, 58–69 (2017).

    Article 

    Google Scholar 

  • Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).

  • Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021).

  • Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Climate Change 134, 59–71 (2016).

    Article 
    CAS 

    Google Scholar 

  • Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).

    Article 

    Google Scholar 

  • Touma, D., Stevenson, S., Lehner, F. & Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 12, 212 (2021).

    Article 
    CAS 

    Google Scholar 

  • Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    Article 

    Google Scholar 

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article 
    CAS 

    Google Scholar 

  • Du, J., Wang, K. & Cui, B. Attribution of the extreme drought-related risk of wildfires in spring 2019 over Southwest China. Bull. Am. Meteorol. Soc. 102, S83–S90 (2021).

    Article 

    Google Scholar 

  • Krikken, F., Lehner, F., Haustein, K., Drobyshev, I. & van Oldenborgh, G. J. Attribution of the role of climate change in the forest fires in Sweden 2018. Nat. Hazards Earth Syst. Sci. 21, 2169–2179 (2021).

    Article 

    Google Scholar 

  • Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P. & Cannon, A. J. Attributing extreme fire risk in Western Canada to human emissions. Climate Change 144, 365–379 (2017).

    Article 

    Google Scholar 

  • Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Article 

    Google Scholar 

  • Lewis, S. C. et al. Deconstructing factors contributing to the 2018 fire weather in Queensland, Australia. Bull. Am. Meteorol. Soc. 101, S115–S122 (2020).

    Article 

    Google Scholar 

  • Hope, P. et al. On determining the impact of increasing atmospheric CO2 on the record fire weather in eastern Australia in February 2017. Bull. Am. Meteorol. Soc. 100, S111–S117 (2019).

    Article 

    Google Scholar 

  • Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).

    Article 

    Google Scholar 

  • Van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).

  • Partain, J. L. et al. 4. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bull. Am. Meteorol. Soc. 97, S14–S18 (2016).

    Article 

    Google Scholar 

  • Brown, T., Leach, S., Wachter, B. & Gardunio, B. The Northern California 2018 extreme fire season. Bull. Am. Meteorol. Soc. 101, S1–S4 (2020).

    Article 

    Google Scholar 

  • Gudmundsson, L., Rego, F. C., Rocha, M. & Seneviratne, S. I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 9, 84008 (2014).

    Article 

    Google Scholar 

  • Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).

    Article 

    Google Scholar 

  • Tett, S. F. B. et al. 12. Anthropogenic forcings and associated changes in fire risk in western North America and Australia during 2015/16. Bull. Am. Meteorol. Soc. 99, S60–S64 (2018).

    Article 

    Google Scholar 

  • Kelley, D. I. et al. Technical note: low meteorological influence found in 2019 Amazonia fires. Biogeosciences 18, 787–804 (2021).

    Article 

    Google Scholar 

  • Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).

    Article 

    Google Scholar 

  • Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1—counterfactual climate for impact attribution. Geosci. Model Dev. 14, 5269–5284 (2021).

    Article 

    Google Scholar 

  • O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).

  • Ara Begum, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) 121–196 (Cambridge Univ. Press, 2022).

  • Frieler, K. et al. Scenario set-up and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a). EGUsphere 2023, 1–83 (2023).

    Google Scholar 

  • Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article 

    Google Scholar 

  • Burton, C. et al. ISIMIP3a Simulation Data from the Fire Sector (v1.0). ISIMIP Repository https://doi.org/10.48364/ISIMIP.446106 (2024).

  • Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    Article 

    Google Scholar 

  • Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318 (2020).

    Article 

    Google Scholar 

  • Turco, M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. USA 120, e2213815120 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, Y. et al. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 15, 5227–5259 (2023).

    Article 

    Google Scholar 

  • Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).

    Article 

    Google Scholar 

  • Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).

    Article 
    CAS 

    Google Scholar 

  • Burton, C. Impacts of Fire, Climate and Land-Use Change on Terrestrial Ecosystems (Univ. Exeter, 2018).

  • Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Article 
    CAS 

    Google Scholar 

  • Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).

    Article 
    CAS 

    Google Scholar 

  • Stott, P. A. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett. https://doi.org/10.1029/2003GL017324 (2003).

  • Stott, P. A. et al. Attribution of extreme weather and climate-related events. WIREs Clim. Change 7, 23–41 (2016).

    Article 

    Google Scholar 

  • Allen, M. Liability for climate change. Nature 421, 891–892 (2003).

    Article 
    CAS 

    Google Scholar 

  • van der Werf, G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Article 

    Google Scholar 

  • Tang, R. et al. Interannual variability and climatic sensitivity of global wildfire activity. Adv. Clim. Change Res. 12, 686–695 (2021).

    Article 

    Google Scholar 

  • Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340 (2013).

    Article 

    Google Scholar 

  • Burton, C. et al. Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geosci. Model Dev. 12, 179–193 (2019).

    Article 
    CAS 

    Google Scholar 

  • Christidis, N., McCarthy, M. & Stott, P. A. The increasing likelihood of temperatures above 30 to 40 °C in the United Kingdom. Nat. Commun. 11, 3093 (2020).

  • Gillett, N. P., Allen, M. R. & Tett, S. F. B. Modelled and observed variability in atmospheric vertical temperature structure. Clim. Dynam. 16, 49–61 (2000).

    Article 

    Google Scholar 

  • Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brunner, L., Lorenz, R., Zumwald, M. & Knutti, R. Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environ. Res. Lett. 14, 124010 (2019).

    Article 

    Google Scholar 

  • Knutti, R. et al. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).

    Article 

    Google Scholar 

  • Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    Article 

    Google Scholar 

  • Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In Proc. 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).

  • [ad_2]

    Source link


    Discover more from Mission LiFE

    Subscribe to get the latest posts sent to your email.


    Leave a Reply

    Categories

    Bharat Amrutkal Trusr@NGO India.

    All rights reserved.

    Design by Mission LiFE

    Discover more from Mission LiFE

    Subscribe now to keep reading and get access to the full archive.

    Continue reading