[ad_1]
Forster, P. M. et al. Indicators of global climate change 2022: annual update of large-scale indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 15, 2295–2327 (2023).
Google Scholar
Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).
Google Scholar
Kelley, D. I. et al. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 9, 690–696 (2019).
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
Sullivan, A. et al. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires (United Nations Environment Programme, 2022).
Ciavarella, A. et al. Prolonged Siberian heat of 2020 almost impossible without human influence. Climate Change 166, 9 (2021).
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. B 371, 20150345 (2016).
Google Scholar
Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet Change 150, 58–69 (2017).
Google Scholar
Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).
Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021).
Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Climate Change 134, 59–71 (2016).
Google Scholar
Goss, M. et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 15, 094016 (2020).
Google Scholar
Touma, D., Stevenson, S., Lehner, F. & Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 12, 212 (2021).
Google Scholar
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).
Google Scholar
Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).
Google Scholar
Du, J., Wang, K. & Cui, B. Attribution of the extreme drought-related risk of wildfires in spring 2019 over Southwest China. Bull. Am. Meteorol. Soc. 102, S83–S90 (2021).
Google Scholar
Krikken, F., Lehner, F., Haustein, K., Drobyshev, I. & van Oldenborgh, G. J. Attribution of the role of climate change in the forest fires in Sweden 2018. Nat. Hazards Earth Syst. Sci. 21, 2169–2179 (2021).
Google Scholar
Kirchmeier-Young, M. C., Zwiers, F. W., Gillett, N. P. & Cannon, A. J. Attributing extreme fire risk in Western Canada to human emissions. Climate Change 144, 365–379 (2017).
Google Scholar
Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).
Google Scholar
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).
Google Scholar
Lewis, S. C. et al. Deconstructing factors contributing to the 2018 fire weather in Queensland, Australia. Bull. Am. Meteorol. Soc. 101, S115–S122 (2020).
Google Scholar
Hope, P. et al. On determining the impact of increasing atmospheric CO2 on the record fire weather in eastern Australia in February 2017. Bull. Am. Meteorol. Soc. 100, S111–S117 (2019).
Google Scholar
Yoon, J.-H. et al. Extreme fire season in California: a glimpse into the future? Bull. Am. Meteorol. Soc. 96, S5–S9 (2015).
Google Scholar
Van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).
Partain, J. L. et al. 4. An assessment of the role of anthropogenic climate change in the Alaska fire season of 2015. Bull. Am. Meteorol. Soc. 97, S14–S18 (2016).
Google Scholar
Brown, T., Leach, S., Wachter, B. & Gardunio, B. The Northern California 2018 extreme fire season. Bull. Am. Meteorol. Soc. 101, S1–S4 (2020).
Google Scholar
Gudmundsson, L., Rego, F. C., Rocha, M. & Seneviratne, S. I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 9, 84008 (2014).
Google Scholar
Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31, L18211 (2004).
Google Scholar
Tett, S. F. B. et al. 12. Anthropogenic forcings and associated changes in fire risk in western North America and Australia during 2015/16. Bull. Am. Meteorol. Soc. 99, S60–S64 (2018).
Google Scholar
Kelley, D. I. et al. Technical note: low meteorological influence found in 2019 Amazonia fires. Biogeosciences 18, 787–804 (2021).
Google Scholar
Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 1–22 (2012).
Google Scholar
Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1—counterfactual climate for impact attribution. Geosci. Model Dev. 14, 5269–5284 (2021).
Google Scholar
O’Neill, B. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) 2411–2538 (Cambridge Univ. Press, 2022).
Ara Begum, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) 121–196 (Cambridge Univ. Press, 2022).
Frieler, K. et al. Scenario set-up and forcing data for impact model evaluation and impact attribution within the third round of the Inter-Sectoral Model Intercomparison Project (ISIMIP3a). EGUsphere 2023, 1–83 (2023).
Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).
Google Scholar
Burton, C. et al. ISIMIP3a Simulation Data from the Fire Sector (v1.0). ISIMIP Repository https://doi.org/10.48364/ISIMIP.446106 (2024).
Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).
Google Scholar
Hantson, S. et al. Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318 (2020).
Google Scholar
Turco, M. et al. Anthropogenic climate change impacts exacerbate summer forest fires in California. Proc. Natl Acad. Sci. USA 120, e2213815120 (2023).
Google Scholar
Chen, Y. et al. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 15, 5227–5259 (2023).
Google Scholar
Forkel, M. et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 16, 57–76 (2019).
Google Scholar
Rabin, S. S. et al. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions. Geosci. Model Dev. 10, 1175–1197 (2017).
Google Scholar
Burton, C. Impacts of Fire, Climate and Land-Use Change on Terrestrial Ecosystems (Univ. Exeter, 2018).
Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Google Scholar
Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).
Google Scholar
Stott, P. A. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophys. Res. Lett. https://doi.org/10.1029/2003GL017324 (2003).
Stott, P. A. et al. Attribution of extreme weather and climate-related events. WIREs Clim. Change 7, 23–41 (2016).
Google Scholar
Allen, M. Liability for climate change. Nature 421, 891–892 (2003).
Google Scholar
van der Werf, G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).
Google Scholar
Tang, R. et al. Interannual variability and climatic sensitivity of global wildfire activity. Adv. Clim. Change Res. 12, 686–695 (2021).
Google Scholar
Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340 (2013).
Google Scholar
Burton, C. et al. Representation of fire, land-use change and vegetation dynamics in the Joint UK Land Environment Simulator vn4.9 (JULES). Geosci. Model Dev. 12, 179–193 (2019).
Google Scholar
Christidis, N., McCarthy, M. & Stott, P. A. The increasing likelihood of temperatures above 30 to 40 °C in the United Kingdom. Nat. Commun. 11, 3093 (2020).
Gillett, N. P., Allen, M. R. & Tett, S. F. B. Modelled and observed variability in atmospheric vertical temperature structure. Clim. Dynam. 16, 49–61 (2000).
Google Scholar
Teckentrup, L. et al. Response of simulated burned area to historical changes in environmental and anthropogenic factors: a comparison of seven fire models. Biogeosciences 16, 3883–3910 (2019).
Google Scholar
Brunner, L., Lorenz, R., Zumwald, M. & Knutti, R. Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environ. Res. Lett. 14, 124010 (2019).
Google Scholar
Knutti, R. et al. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).
Google Scholar
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate–fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).
Google Scholar
Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a ‘kneedle’ in a haystack: detecting knee points in system behavior. In Proc. 31st International Conference on Distributed Computing Systems Workshops 166–171 (IEEE, 2011).
[ad_2]
Source link
Discover more from Mission LiFE
Subscribe to get the latest posts sent to your email.