GA4 432855558 307042592
0 Comments

Mission LiFE

[ad_1]

10584 2024 3791 Fig1 HTML

  • Abro M, Elahi E, Chand R et al (2022) Estimation of a trend of meteorological and hydrological drought over Qinhuai River Basin. Theoret Appl Climatol 147:1065–1078. https://doi.org/10.1007/s00704-021-03870-z

    Article 

    Google Scholar 

  • Baig M, Naikoo M, Ansari A et al (2021) Spatio-temporal analysis of precipitation pattern and trend using standardized precipitation index and Mann–Kendall test in coastal Andhra Pradesh. Model Earth Syst Environ 1–20. https://doi.org/10.1007/s40808-021-01262-w

  • Cai D, You Q, Fraedrich K et al (2017) Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal Dependence Associated with the global warming Hiatus. J Clim 30:969–984. https://doi.org/10.1175/jcli-d-16-0343.1

    Article 

    Google Scholar 

  • de Berg M, Cheong O, van Kreveld M et al (2008) Delaunay triangulations: height interpolation. 191–218. https://doi.org/10.1007/978-3-540-77974-2_9

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the tibetan. Plateau? Sci Rep 5:13711. https://doi.org/10.1038/srep13711

    Article 

    Google Scholar 

  • Fischer E, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Change 5:560–564. https://doi.org/10.1038/nclimate2617

    Article 

    Google Scholar 

  • Gao Y, Chen F, Lettenmaier D et al (2018) Does elevation-dependent warming hold true above 5000m elevation? Lessons from the Tibetan Plateau. Clim Atmospheric Sci 1:1–7. https://doi.org/10.1038/s41612-018-0030-z

    Article 
    CAS 

    Google Scholar 

  • Girma A, Qin T, Wang H et al (2020) Study on recent trends of Climate Variability using innovative Trend analysis: the case of the upper Huai River Basin. Pol J Environ Stud 29:2199–2210. https://doi.org/10.15244/pjoes/103448

    Article 

    Google Scholar 

  • Guo D, Wang H (2012) The significant climate warming in the northern Tibetan Plateau and its possible causes. Int J Climatol 32:1775–1781. https://doi.org/10.1002/joc.2388

    Article 

    Google Scholar 

  • Guo D, Sun J, Yang K et al (2019) Revisiting recent elevation-dependent warming on the Tibetan Plateau using Satellite-Based Data sets. J Geophys Research-Atmospheres 124:8511–8521. https://doi.org/10.1029/2019jd030666

    Article 

    Google Scholar 

  • Guo D, Pepin N, Yang K et al (2021) Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau. Sci Bull 66:1146–1150. https://doi.org/10.1016/j.scib.2021.02.013

    Article 

    Google Scholar 

  • Habeeb R, Gupta Y, Chinwan H et al (2019) Assessing Demographic and Water Sensitivities Arising due to Urban Water Insecurity in Haldwani, Uttarakhand (India): a GIS-Based spatial analysis. J Geovisualization Spat Anal 3:8. https://doi.org/10.1007/s41651-019-0031-4

    Article 

    Google Scholar 

  • Ji P, Yuan X (2020) Underestimation of the warming Trend over the Tibetan Plateau during 1998-2013 by Global Land Data Assimilation Systems and Atmospheric reanalyses. J Meteorological Res 34:88–100. https://doi.org/10.1007/s13351-020-9100-3

    Article 

    Google Scholar 

  • Kendall MG (1975) Rank Correlation Methods, 4th edition. Charles Griffin, London

  • Khesali E, Mobasheri M (2020) A method in near-surface estimation of air temperature (NEAT) in times following the satellite passing time using MODIS images. Adv Space Res 65:2339–2347. https://doi.org/10.1016/j.asr.2020.02.006

    Article 

    Google Scholar 

  • Kitsara G, Papaioannou G, Retalis A et al (2018) Estimation of air temperature and reference evapotranspiration using MODIS land surface temperature over Greece. Int J Remote Sens 39:924–948. https://doi.org/10.1080/01431161.2017.1395965

    Article 

    Google Scholar 

  • Korneta P (2020) Growth, profitability and liquidity of Polish road transportation companies. Bus Logistics Mod Manage: 61–74

  • Liu X, Chen B (2020) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742. https://doi.org/10.1002/1097-0088(20001130)20:143.0.CO;2-Y

    Article 

    Google Scholar 

  • Liu Y, Zhang Y, Zhu J et al (2019) Warming slowdown over the tibetan plateau in recent decades. Theoret Appl Climatol 135:1375–1385. https://doi.org/10.1007/s00704-018-2435-3

    Article 

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against Trend. Econometrica 13:245–259. https://doi.org/10.2307/1907187

    Article 

    Google Scholar 

  • Ouyang X, Chen D, Feng Y et al (2019) Comparison of seasonal surface temperature trend, spatial variability, and elevation dependency from satellite-derived products and numerical simulations over the Tibetan Plateau from 2003 to 2011. Int J Remote Sens 40:1844–1857. https://doi.org/10.1080/01431161.2018.1482024

    Article 

    Google Scholar 

  • Peng X, Frauenfeld O, Jin H et al (2021) Assessment of temperature changes on the tibetan Plateau during 1980-2018. Earth Space Sci 8. https://doi.org/10.1029/2020ea001609

  • Pepin N, Bradley R, Diaz H et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. https://doi.org/10.1038/nclimate2563

    Article 

    Google Scholar 

  • Pepin N, Maeda E, Williams R (2016) Use of remotely sensed land surface temperature as a proxy for air temperatures at high elevations: findings from a 5000m elevational transect across Kilimanjaro. J Geophys Research-Atmospheres 121:9998–10015. https://doi.org/10.1002/2016jd025497

    Article 

    Google Scholar 

  • Pepin N, Deng H, Zhang H et al (2019) An examination of temperature trends at High elevations across the Tibetan Plateau: the Use of MODIS LST to understand patterns of elevation-dependent warming. J Geophys Research-Atmospheres 124:5738–5756. https://doi.org/10.1029/2018jd029798

    Article 

    Google Scholar 

  • Qin J, Yang K, Liang S et al (2009) The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim Change 97:321–327. https://doi.org/10.1007/s10584-009-9733-9

    Article 

    Google Scholar 

  • Qin Y, Liu W, Guo Z et al (2020) Spatial and temporal variations in soil temperatures over the Qinghai–Tibet Plateau from 1980 to 2017 based on reanalysis products. Theoretical Appl Climatology 140:1055–1069. https://doi.org/10.1007/s00704-020-03149-9

    Article 

    Google Scholar 

  • Quinlan J (1992) Learning with continuous classes.5th Australian joint conference on artificial intelligence (pp. 343-348): World Scientific

  • Ren G, Ding Y, Tang G (2017) An overview of Mainland China Temperature Change Research. J Meteorological Res 31:3–16. https://doi.org/10.1007/s13351-017-6195-2

    Article 

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article 

    Google Scholar 

  • Snyder W, Wan Z, Zhang Y et al (1998) Classification-based emissivity for land surface temperature measurement from space. Int J Remote Sens 19:2753–2774. https://doi.org/10.1080/014311698214497

    Article 

    Google Scholar 

  • Wang G, Bai W, Li N et al (2011) Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China. Clim Change 106:463–482. https://doi.org/10.1007/s10584-010-9952-0

    Article 
    CAS 

    Google Scholar 

  • Wang M, Zhang Z, Hu T et al (2020) Ieee J Sel Top Appl Earth Observations Remote Sens 13:4689–4701. https://doi.org/10.1109/jstars.2020.3014586. An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine

  • Wang X, Li T, Ikhumhen H et al (2022a) Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmospheric Pollution Res 13:10. https://doi.org/10.1016/j.apr.2021.101274

    Article 
    CAS 

    Google Scholar 

  • Wang Y, Hessen D, Samset B et al (2022b) Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens Environ 280:1–16. https://doi.org/10.1016/j.rse.2022.113181

    Article 

    Google Scholar 

  • Worden L, Wannier R, Hoff N et al (2019) Projections of epidemic transmission and estimation of vaccination impact during an ongoing Ebola virus disease outbreak in Northeastern Democratic Republic of Congo, as of Feb. 25, 2019. PLoS Negl Trop Dis 13:e0007512. https://doi.org/10.1371/journal.pntd.0007512

    Article 

    Google Scholar 

  • Wu F, You Q, Cai Z et al (2023) Significant elevation dependent warming over the Tibetan Plateau after removing longitude and latitude factors. Atmos Res 284:106603. https://doi.org/10.1016/j.atmosres.2022.106603

    Article 

    Google Scholar 

  • Xu Y, Knudby A, Shen Y et al (2018) Mapping Monthly Air Temperature in the tibetan Plateau from MODIS Data based on machine learning methods. Ieee J Sel Top Appl Earth Observations Remote Sens 11:345–354. https://doi.org/10.1109/jstars.2017.2787191

    Article 

    Google Scholar 

  • Yan Y, You Q, Wu F et al (2020) Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Clim Dyn 55:2405–2419. https://doi.org/10.1007/s00382-020-05386-0

    Article 

    Google Scholar 

  • Yang J, Huang M, Zhai P (2021a) Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau. J Meteorological Res 35:663–672. https://doi.org/10.1007/s13351-021-0196-x

    Article 

    Google Scholar 

  • Yang M, Zhao W, Zhan Q et al (2021b) Spatiotemporal patterns of Land Surface temperature change in the tibetan Plateau based on MODIS/Terra Daily Product from 2000 to 2018. Ieee J Sel Top Appl Earth Observations Remote Sens 14:6501–6514. https://doi.org/10.1109/jstars.2021.3089851

    Article 

    Google Scholar 

  • Yang X, Zhou B, Xu Y et al (2021c) CMIP6 evaluation and projection of temperature and precipitation over China. Adv Atmos Sci 38:817–830. https://doi.org/10.1007/s00376-021-0351-4

    Article 

    Google Scholar 

  • Yang K, Guo D, Hua W et al (2022) Tibetan Plateau temperature Extreme Changes and their elevation dependency from ground-based observations. J Geophys Research-Atmospheres 127:11. https://doi.org/10.1029/2021jd035734

    Article 

    Google Scholar 

  • You Q, Kang S, Pepin N et al (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Change 71:124–133. https://doi.org/10.1016/j.gloplacha.2010.01.020

    Article 

    Google Scholar 

  • You Q, Wu F, Shen L et al (2020) Tibetan Plateau amplification of climate extremes under global warming of 1.5 C, 2 C and 3 C. Global Planet Change 192:103261. https://doi.org/10.1016/j.gloplacha.2020.103261

    Article 

    Google Scholar 

  • You Q, Cai Z, Pepin N et al (2021) Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth Sci Rev 217:103625. https://doi.org/10.1016/j.earscirev.2021.103625

    Article 

    Google Scholar 

  • Zhan Q, Zhao W, Yang M et al (2021) A long-term record (1995-2019) of the dynamics of land desertification in the middle reaches of Yarlung Zangbo River basin derived from Landsat data. Geogr Sustain 2:12–21. https://doi.org/10.1016/j.geosus.2021.01.002

    Article 

    Google Scholar 

  • Zhong L, Ma Y, Xue Y et al (2019) Climate change trends and impacts on vegetation greening over the Tibetan Plateau. J Geophys Research: Atmos 124:7540–7552. https://doi.org/10.1029/2019JD030481

    Article 

    Google Scholar 

  • Zhou B, Erell E, Hough I et al (2020) Estimation of hourly near surface air temperature across Israel using an ensemble model. Sci Total Environ 12:1741. https://doi.org/10.1016/j.scitotenv.2021.152538

    Article 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link


    Discover more from Mission LiFE

    Subscribe to get the latest posts sent to your email.


    Leave a Reply

    Categories

    Bharat Amrutkal Trusr@NGO India.

    All rights reserved.

    Design by Mission LiFE

    Discover more from Mission LiFE

    Subscribe now to keep reading and get access to the full archive.

    Continue reading