GA4 432855558 307042592
0 Comments

Mission LiFE

[ad_1]

41558 2024 2147 Fig1 HTML

  • Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles https://doi.org/10.1029/2008GB003327 (2009).

  • Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

  • Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article 
    CAS 

    Google Scholar 

  • Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    Article 
    CAS 

    Google Scholar 

  • Crowther, T. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2, 875–879 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mack, M. C., Schuur, E. A., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).

    Article 
    CAS 

    Google Scholar 

  • Capek, P. et al. A plant–microbe interaction framework explaining nutrient effects on primary production. Nat. Ecol. Evol. 2, 1588–1596 (2018).

    Article 

    Google Scholar 

  • Shaver, G., Chapin, F. III & Gartner, B. L. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J. Ecol. 74, 257–278 (1986).

    Article 

    Google Scholar 

  • LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article 

    Google Scholar 

  • Treseder, K. K. Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).

    Article 

    Google Scholar 

  • Schimel, J. P. & Weintraub, M. N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003).

    Article 
    CAS 

    Google Scholar 

  • Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).

    Article 
    CAS 

    Google Scholar 

  • Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in Arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).

    Article 
    CAS 

    Google Scholar 

  • Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    Article 

    Google Scholar 

  • Lynch, L. M., Machmuller, M. B., Cotrufo, M. F., Paul, E. A. & Wallenstein, M. D. Tracking the fate of fresh carbon in the Arctic tundra: will shrub expansion alter responses of soil organic matter to warming? Soil Biol. Biochem. 120, 134–144 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66, 503–522 (1996).

    Article 

    Google Scholar 

  • Cornelissen, J. H. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).

    Article 

    Google Scholar 

  • Shaver, G. R. & Chapin, F. S. III Production: biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol. Monogr. 61, 1–31 (1991).

    Article 

    Google Scholar 

  • Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711 (1995).

    Article 

    Google Scholar 

  • Chapin, F. S. et al. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J. Ecol. 97, 840–850 (2009).

    Article 
    CAS 

    Google Scholar 

  • Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).

    Article 
    CAS 

    Google Scholar 

  • Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Glob. Change Biol. 16, 641–656 (2010).

    Article 

    Google Scholar 

  • He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bouskill, N. J., Riley, W. J., Zhu, Q., Mekonnen, Z. A. & Grant, R. F. Alaskan carbon–climate feedbacks will be weaker than inferred from short-term experiments. Nat. Commun. 11, 5798 (2020).

    Article 
    CAS 

    Google Scholar 

  • Melillo, J. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173 (2002).

    Article 
    CAS 

    Google Scholar 

  • Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bockheim, J., Hinkel, K. & Nelson, F. Predicting carbon storage in tundra soils of arctic Alaska. Soil Sci. Soc. Am. J. 67, 948–950 (2003).

    Article 
    CAS 

    Google Scholar 

  • Michaelson, G. J., Ping, C. & Kimble, J. Carbon storage and distribution in tundra soils of Arctic Alaska, USA. Arct. Alp. Res. 28, 414–424 (1996).

    Article 

    Google Scholar 

  • Peng, X. et al. Active layer thickness and permafrost area projections for the 21st century. Earth’s Future 11, e2023EF003573 (2023).

    Article 

    Google Scholar 

  • Shaver, G. R. et al. Species composition interacts with fertilizer to control long‐term change in tundra productivity. Ecology 82, 3163–3181 (2001).

    Article 

    Google Scholar 

  • Sturm, M. et al. Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55, 17–26 (2005).

    Article 

    Google Scholar 

  • Heijmans, M. M. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Article 

    Google Scholar 

  • Gagnon, M., Domine, F. & Boudreau, S. The carbon sink due to shrub growth on Arctic tundra: a case study in a carbon-poor soil in eastern Canada. Environ. Res. Commun. 1, 091001 (2019).

    Article 

    Google Scholar 

  • Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cycles 33, 100–107 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hobara, S. et al. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct. Antarct. Alp. Res. 38, 363–372 (2006).

    Article 

    Google Scholar 

  • Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).

    Article 
    CAS 

    Google Scholar 

  • Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).

    Article 

    Google Scholar 

  • DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).

    Article 

    Google Scholar 

  • McCarthy, M. & Enquist, B. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713-720 (2007).

  • Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392 (1985).

  • Sullivan, P. F. et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153, 643–652 (2007).

    Article 

    Google Scholar 

  • Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).

    Article 

    Google Scholar 

  • Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).

    Article 
    CAS 

    Google Scholar 

  • Dijkstra, P. et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol. Biochem. 89, 35–43 (2015).

    Article 
    CAS 

    Google Scholar 

  • McLaren, J. R. & Buckeridge, K. M. Decoupled above‐and belowground responses to multi‐decadal nitrogen and phosphorus amendments in two tundra ecosystems. Ecosphere 10, e02735 (2019).

    Article 

    Google Scholar 

  • Keller, K., Blum, J. D. & Kling, G. W. Geochemistry of soils and streams on surfaces of varying ages in arctic Alaska. Arct. Antarct. Alp. Res. 39, 84–98 (2007).

    Article 

    Google Scholar 

  • Mörsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).

    Article 

    Google Scholar 

  • Koyama, A., Wallenstein, M. D., Simpson, R. T. & Moore, J. C. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic tundra soils. PLoS ONE 8, e77212 (2013).

    Article 
    CAS 

    Google Scholar 

  • Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob. Change Biol. 15, 1631–1639 (2009).

    Article 

    Google Scholar 

  • Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. 8, 035020 (2013).

    Article 
    CAS 

    Google Scholar 

  • Wieder, W. R., Sulman, B. N., Hartman, M. D., Koven, C. D. & Bradford, M. A. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 46, 14486–14495 (2019).

    Article 

    Google Scholar 

  • Huntzinger, D. et al. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environ. Res. Lett. 15, 025005 (2020).

    Article 
    CAS 

    Google Scholar 

  • Melillo, J. M. et al. Soil warming, carbon-nitrogen interactions and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).

    Article 
    CAS 

    Google Scholar 

  • Slavik, K. et al. Long‐term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85, 939–954 (2004).

    Article 

    Google Scholar 

  • Parker, T. C. et al. Shrub expansion in the Arctic may induce large‐scale carbon losses due to changes in plant–soil interactions. Plant Soil 463, 643–651 (2021).

    Article 
    CAS 

    Google Scholar 

  • NEON Site Level Plot Summary, Toolik Lake (TOOL) (NSF, 2019); www.neonscience.org/field-sites/tool

  • Weintraub, M. N., Scott-Denton, L. E., Schmidt, S. K. & Monson, R. K. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon and nutrient availability in a subalpine forest ecosystem. Oecologia 154, 327–338 (2007).

    Article 

    Google Scholar 

  • Brookes, P., Landman, A., Pruden, G. & Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    Article 
    CAS 

    Google Scholar 

  • Rhine, E., Mulvaney, R., Pratt, E. & Sims, G. Improving the Berthelot reaction for determining ammonium in soil extracts and water. Soil Sci. Soc. Am. J. 62, 473–480 (1998).

    Article 
    CAS 

    Google Scholar 

  • Doane, T. A. & Horwáth, W. R. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 36, 2713–2722 (2003).

    Article 
    CAS 

    Google Scholar 

  • D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).

    Article 

    Google Scholar 

  • Shaver, G. R. et al. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J. Ecol. 94, 740–753 (2006).

    Article 
    CAS 

    Google Scholar 

  • Werth, M. & Kuzyakov, Y. Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol. Biochem. 40, 625–637 (2008).

    Article 
    CAS 

    Google Scholar 

  • Balesdent, J., Wagner, G. & Mariotti, A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 52, 118–124 (1988).

    Article 
    CAS 

    Google Scholar 

  • Rubino, M. et al. An isotopic method for testing the influence of leaf litter quality on carbon fluxes during decomposition. Oecologia 154, 155–166 (2007).

    Article 

    Google Scholar 

  • Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    Article 
    CAS 

    Google Scholar 

  • Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytol. 196, 79–91 (2012).

    Article 
    CAS 

    Google Scholar 

  • Magrini, K., Evans, R., Hoover, C., Elam, C. & Davis, M. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results. Environ. Pollut. 116, S255–S268 (2002).

    Article 
    CAS 

    Google Scholar 

  • Evans, R. J. & Milne, T. A. Molecular characterization of the pyrolysis of biomass. Energy Fuels 1, 123–137 (1987).

    Article 
    CAS 

    Google Scholar 

  • Plante, A. F., Magrini-Bair, K., Vigil, M. & Paul, E. A. Pyrolysis molecular beam mass spectrometry to characterize soil organic matter composition in chemically isolated fractions from differing land uses. Biogeochemistry 92, 145–161 (2009).

    Article 
    CAS 

    Google Scholar 

  • Haddix, M. L. et al. Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards. Geoderma 283, 88–100 (2016).

    Article 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link


    Discover more from Mission LiFE

    Subscribe to get the latest posts sent to your email.


    Leave a Reply

    Categories

    Bharat Amrutkal Trusr@NGO India.

    All rights reserved.

    Design by Mission LiFE

    Discover more from Mission LiFE

    Subscribe now to keep reading and get access to the full archive.

    Continue reading