[ad_1]
Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles https://doi.org/10.1029/2008GB003327 (2009).
Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).
Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).
Google Scholar
Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).
Google Scholar
Crowther, T. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).
Google Scholar
Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Change 2, 875–879 (2012).
Google Scholar
Mack, M. C., Schuur, E. A., Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Ecosystem carbon storage in Arctic tundra reduced by long-term nutrient fertilization. Nature 431, 440–443 (2004).
Google Scholar
Capek, P. et al. A plant–microbe interaction framework explaining nutrient effects on primary production. Nat. Ecol. Evol. 2, 1588–1596 (2018).
Google Scholar
Shaver, G., Chapin, F. III & Gartner, B. L. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J. Ecol. 74, 257–278 (1986).
Google Scholar
LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).
Google Scholar
Treseder, K. K. Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies. Ecol. Lett. 11, 1111–1120 (2008).
Google Scholar
Schimel, J. P. & Weintraub, M. N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003).
Google Scholar
Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84 (2012).
Google Scholar
Hartley, I. P., Hopkins, D. W., Sommerkorn, M. & Wookey, P. A. The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol. Biochem. 42, 92–100 (2010).
Google Scholar
Wild, B. et al. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in Arctic permafrost soil. Soil Biol. Biochem. 75, 143–151 (2014).
Google Scholar
Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).
Google Scholar
Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).
Google Scholar
Lynch, L. M., Machmuller, M. B., Cotrufo, M. F., Paul, E. A. & Wallenstein, M. D. Tracking the fate of fresh carbon in the Arctic tundra: will shrub expansion alter responses of soil organic matter to warming? Soil Biol. Biochem. 120, 134–144 (2018).
Google Scholar
Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66, 503–522 (1996).
Google Scholar
Cornelissen, J. H. et al. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol. Lett. 10, 619–627 (2007).
Google Scholar
Shaver, G. R. & Chapin, F. S. III Production: biomass relationships and element cycling in contrasting Arctic vegetation types. Ecol. Monogr. 61, 1–31 (1991).
Google Scholar
Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J. & Laundre, J. A. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711 (1995).
Google Scholar
Chapin, F. S. et al. The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. J. Ecol. 97, 840–850 (2009).
Google Scholar
Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).
Google Scholar
Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Glob. Change Biol. 16, 641–656 (2010).
Google Scholar
He, Y. et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science 353, 1419–1424 (2016).
Google Scholar
Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).
Google Scholar
Bouskill, N. J., Riley, W. J., Zhu, Q., Mekonnen, Z. A. & Grant, R. F. Alaskan carbon–climate feedbacks will be weaker than inferred from short-term experiments. Nat. Commun. 11, 5798 (2020).
Google Scholar
Melillo, J. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173 (2002).
Google Scholar
Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).
Google Scholar
Bockheim, J., Hinkel, K. & Nelson, F. Predicting carbon storage in tundra soils of arctic Alaska. Soil Sci. Soc. Am. J. 67, 948–950 (2003).
Google Scholar
Michaelson, G. J., Ping, C. & Kimble, J. Carbon storage and distribution in tundra soils of Arctic Alaska, USA. Arct. Alp. Res. 28, 414–424 (1996).
Google Scholar
Peng, X. et al. Active layer thickness and permafrost area projections for the 21st century. Earth’s Future 11, e2023EF003573 (2023).
Google Scholar
Shaver, G. R. et al. Species composition interacts with fertilizer to control long‐term change in tundra productivity. Ecology 82, 3163–3181 (2001).
Google Scholar
Sturm, M. et al. Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55, 17–26 (2005).
Google Scholar
Heijmans, M. M. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).
Google Scholar
Gagnon, M., Domine, F. & Boudreau, S. The carbon sink due to shrub growth on Arctic tundra: a case study in a carbon-poor soil in eastern Canada. Environ. Res. Commun. 1, 091001 (2019).
Google Scholar
Ackerman, D., Millet, D. B. & Chen, X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochem. Cycles 33, 100–107 (2019).
Google Scholar
Bobbink, R. et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol. Appl. 20, 30–59 (2010).
Google Scholar
Hobara, S. et al. Nitrogen fixation in surface soils and vegetation in an Arctic tundra watershed: a key source of atmospheric nitrogen. Arct. Antarct. Alp. Res. 38, 363–372 (2006).
Google Scholar
Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013).
Google Scholar
Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).
Google Scholar
DeMarco, J., Mack, M. C. & Bret-Harte, M. S. Effects of Arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition. Ecology 95, 1861–1875 (2014).
Google Scholar
McCarthy, M. & Enquist, B. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713-720 (2007).
Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392 (1985).
Sullivan, P. F. et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153, 643–652 (2007).
Google Scholar
Iversen, C. M. et al. The unseen iceberg: plant roots in Arctic tundra. New Phytol. 205, 34–58 (2015).
Google Scholar
Tao, F. et al. Microbial carbon use efficiency promotes global soil carbon storage. Nature 618, 981–985 (2023).
Google Scholar
Dijkstra, P. et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol. Biochem. 89, 35–43 (2015).
Google Scholar
McLaren, J. R. & Buckeridge, K. M. Decoupled above‐and belowground responses to multi‐decadal nitrogen and phosphorus amendments in two tundra ecosystems. Ecosphere 10, e02735 (2019).
Google Scholar
Keller, K., Blum, J. D. & Kling, G. W. Geochemistry of soils and streams on surfaces of varying ages in arctic Alaska. Arct. Antarct. Alp. Res. 39, 84–98 (2007).
Google Scholar
Mörsdorf, M. A. et al. Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biol. Biochem. 135, 222–234 (2019).
Google Scholar
Koyama, A., Wallenstein, M. D., Simpson, R. T. & Moore, J. C. Carbon-degrading enzyme activities stimulated by increased nutrient availability in Arctic tundra soils. PLoS ONE 8, e77212 (2013).
Google Scholar
Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob. Change Biol. 15, 1631–1639 (2009).
Google Scholar
Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. 8, 035020 (2013).
Google Scholar
Wieder, W. R., Sulman, B. N., Hartman, M. D., Koven, C. D. & Bradford, M. A. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 46, 14486–14495 (2019).
Google Scholar
Huntzinger, D. et al. Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems. Environ. Res. Lett. 15, 025005 (2020).
Google Scholar
Melillo, J. M. et al. Soil warming, carbon-nitrogen interactions and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).
Google Scholar
Slavik, K. et al. Long‐term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85, 939–954 (2004).
Google Scholar
Parker, T. C. et al. Shrub expansion in the Arctic may induce large‐scale carbon losses due to changes in plant–soil interactions. Plant Soil 463, 643–651 (2021).
Google Scholar
NEON Site Level Plot Summary, Toolik Lake (TOOL) (NSF, 2019); www.neonscience.org/field-sites/tool
Weintraub, M. N., Scott-Denton, L. E., Schmidt, S. K. & Monson, R. K. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon and nutrient availability in a subalpine forest ecosystem. Oecologia 154, 327–338 (2007).
Google Scholar
Brookes, P., Landman, A., Pruden, G. & Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
Google Scholar
Rhine, E., Mulvaney, R., Pratt, E. & Sims, G. Improving the Berthelot reaction for determining ammonium in soil extracts and water. Soil Sci. Soc. Am. J. 62, 473–480 (1998).
Google Scholar
Doane, T. A. & Horwáth, W. R. Spectrophotometric determination of nitrate with a single reagent. Anal. Lett. 36, 2713–2722 (2003).
Google Scholar
D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).
Google Scholar
Shaver, G. R. et al. Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J. Ecol. 94, 740–753 (2006).
Google Scholar
Werth, M. & Kuzyakov, Y. Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C. Soil Biol. Biochem. 40, 625–637 (2008).
Google Scholar
Balesdent, J., Wagner, G. & Mariotti, A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 52, 118–124 (1988).
Google Scholar
Rubino, M. et al. An isotopic method for testing the influence of leaf litter quality on carbon fluxes during decomposition. Oecologia 154, 155–166 (2007).
Google Scholar
Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).
Google Scholar
Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytol. 196, 79–91 (2012).
Google Scholar
Magrini, K., Evans, R., Hoover, C., Elam, C. & Davis, M. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results. Environ. Pollut. 116, S255–S268 (2002).
Google Scholar
Evans, R. J. & Milne, T. A. Molecular characterization of the pyrolysis of biomass. Energy Fuels 1, 123–137 (1987).
Google Scholar
Plante, A. F., Magrini-Bair, K., Vigil, M. & Paul, E. A. Pyrolysis molecular beam mass spectrometry to characterize soil organic matter composition in chemically isolated fractions from differing land uses. Biogeochemistry 92, 145–161 (2009).
Google Scholar
Haddix, M. L. et al. Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards. Geoderma 283, 88–100 (2016).
Google Scholar
[ad_2]
Source link
Discover more from Mission LiFE
Subscribe to get the latest posts sent to your email.